Space-Group Determination by Dynamic Extinction in Convergent-Beam Electron Diffraction

By M. Tanaka, H. Sekil* and T. Nagasawa
Department of Physics, Faculty of Science, Tohoku University, Sendai 980, Japan

(Received 18 March 1983; accepted 9 May 1983)

Abstract

Tables of dynamic extinction lines which occur in convergent-beam electron diffraction patterns (GM lines) are given for all the space groups on the basis of the rules given by Gjønnes \& Moodie [Acta Cryst. (1965), 19, 65-67]. It is found that 191 space groups can be identified by GM lines. A convenient experimental method which distinguishes a screw axis and a glide plane is demonstrated. Experimental results are shown in which the GM lines due to a screw axis and those due to a glide plane are separately observed. The GM lines appearing in a symmetrical four-beam pattern are demonstrated.

Introduction

Dynamic extinction in electron diffraction was first studied by Cowley \& Moodie (1959) on the basis of their multi-slice theory. They revealed that dynamic diffraction effects can give no intensity to any kinematically forbidden reflections caused by a screw axis or a glide plane if the incident electron beam impinges exactly parallel to a principal axis of a crystal. Miyake, Takagi \& Fujimoto (1960) reinvestigated the problem using Bethe's dynamical theory. They clearly showed the difference between the extinction rules for structure amplitudes and those for reflections, and established the basis to consider the dynamic extinction. As applications of the rules, they gave the following results for the incident beam parallel to a principal axis: A glide plane causes the dynamic extinction in a kinematically forbidden reflection. A twofold screw axis also causes the extinction when only the reflections of the zeroth Laue zone are considered. The kinematically forbidden 200 reflection due to the 4_{1} screw axis is dynamically allowed, whereas the 100 reflection is forbidden not only kinematically but also dynamically. The kine-

[^0]matically forbidden reflections not due to symmetry elements but due to special positions, for instance the 222 reflection of the diamond structure, are not forbidden by dynamical diffraction. Cowley, Moodie, Miyake, Takagi \& Fujimoto (1961) reconfirmed using the multi-slice method that the kinematically forbidden 200 reflection due to the 4_{1} screw axis is allowed by dynamical diffraction when the incident beam is parallel to a principal axis of a crystal. On the basis of a multiple scattering theory (e.g. Fujiwara, (1959), Gjønnes \& Moodie (1965) revealed the incident-beam orientations at which a kinematically forbidden reflection caused by a glide plane or a twofold screw axis remains forbidden even by dynamical diffraction. They showed that glide planes and twofold screw axes cause the different zero-intensity lines when the reflections of higher Laue zones are taken into account. The zero-intensity lines appearing in convergent-beam electron diffraction (CBED) patterns have been called Gjønnes-Moodie lines (GM lines). Tinnappel (1975) explained the results of Gjønnes \& Moodie by applying group theory, his treatment being regarded as an extension of the work of Miyake, Takagi \& Fujimoto (1960). Tanaka \& Sekii (1982a) briefly reported the space-group-determination method using GM lines.

In the present paper, on the basis of the results of Gjønnes \& Moodie (1965) and Miyake, Takagi \& Fujimoto (1960), we investigate the dynamic extinction rules for the cases when several symmetry elements which cause GM lines coexist and when the symmetry elements are combined with various lattice types. We give tables which list the GM lines expected at various incident-beam directions for all the space groups. We

Table 1. Dynamic extinction rules for the symmetry elements of a plane-parallel specimen

Symmetry elements of plane-parallel specimen	Dynamic extinction rules	
Glide plane	g^{\prime}	A_{2}, B_{2} and A_{3} Intersection of A and B Twofold screw axis
	2_{1}^{\prime}	A_{2}, B_{2} and B_{3}

(C) 1983 International Union of Crystallography
clarify the space groups which can be identified by only the dynamic extinction effect or the GM lines. A convenient experimental method which distinguishes be-

Fig. 1. A and B GM lines in the forbidden reflection disks of a CBED pattern are schematically shown. Directions of the 2_{1} screw axis and the glide translation are indicated by solid and dotted arrows, respectively. First-order reflection satisfies Bragg condition.

Fig. 2. Geometrical arrangement of the incident beam and symmetry elements to explain rule 6.
tween the GM lines by a glide plane and those by a screw axis is demonstrated. The experimental result in which the GM lines due to a glide plane are separately observed from those due to a screw axis when both symmetry elements coexist is shown. The GM lines appearing in a symmetrical four-beam pattern are demonstrated.

Dynamic extinction rules

We consider a perfect crystalline specimen which is plane-parallel and extends infinitely in two dimensions. The specimen has ten point-group symmetry elements

Table 2. GM lines for point groups $2, m$ and $2 / m$
Unique axis is in the \mathbf{b} direction.

Space group	Incident beam direction \|h0l]	
$3 P 2$		
$4 P 2_{1}$	$\begin{gathered} 0 k 0 \\ 2_{1} \end{gathered}$	$\begin{array}{r} A_{2} B_{2} \\ B_{3} \end{array}$
5 C 2		
6 Pm		
7 Pc	$h^{\prime} 0 l^{\prime}$	$A_{2} B_{2}$
8 Cm		
9 Cc	$h^{\prime} 0{ }^{\prime}$	$A_{2} B_{2}$
9	c	A_{3}
$10 \mathrm{P} 2 / \mathrm{m}$		
$11 \mathrm{P2} 1 / \mathrm{m}$	0 kO	$A_{2} B_{2}$
$12 \mathrm{C} 2 / \mathrm{m}$		
$13 \mathrm{P} 2 / \mathrm{C}$	$h^{\prime} 0{ }^{\prime}$	$A_{2} B_{2}$
	,	A_{3}
	OkO	$A_{2} B_{2}$
$14 P 2,1 / c$	2 $h^{\prime} 0^{\prime \prime}$	${ }^{B_{3}}$
	$h^{\prime}{ }^{\prime \prime}$	$A_{1} B_{2}$
	c	A_{3}
$15 \mathrm{C} 2 / \mathrm{c}$	$h^{\prime} 0{ }^{\prime \prime}$	$A_{2} B_{2}$
	c	A_{3}

Table 3. GM lines for point group 222

which consist of six two-dimensional elements and four three-dimensional ones. The former consists of the 1 -, 2 -, 3-, 4- and 6-fold rotation axes which are parallel to the surface normal of the specimen and the mirror plane m which includes the surface normal (vertical
mirror plane). The latter consists of (1) the mirror plane m^{\prime} and (2) the twofold axis 2^{\prime} which are parallel to the specimen surface and pass through the midpoint of the specimen (horizontal mirror plane and horizontal twofold axis), (3) the inversion center i which is placed

Table 4. GM lines for point group $m m 2$

Space group	[100]		[010]		Incident beam direction [001] [hk0]				[0kl]		[hol]	
25 Pmm 2												
$26.8 m c 2$,	$\begin{gathered} 001 \\ c, 2 \end{gathered}$	$\begin{aligned} & A_{2} B_{2} \\ & A_{3} B_{3} \end{aligned}$	$\begin{gathered} 001 \\ 2_{1} \end{gathered}$	B_{3}			$\begin{gathered} 00 I \\ 2_{1} \end{gathered}$	$\begin{array}{r} A_{2} B_{2} \\ B_{3} \end{array}$			$\begin{gathered} h^{\prime} 0 l^{\prime} \\ c \end{gathered}$	$\begin{aligned} & A_{2} B_{2} \\ & A_{3} \end{aligned}$
$27 \operatorname{Pcc} 2$	$\begin{gathered} 001 \\ c_{2} \end{gathered}$	A_{3}	$\begin{gathered} 001 \\ c_{1} \end{gathered}$	A_{3}					$\begin{gathered} 0 k^{\prime} i^{\prime} \\ c_{1} \end{gathered}$	$\begin{aligned} & A_{2} B_{2} \\ & A_{3} \end{aligned}$	c_{2}	$\begin{aligned} & A_{2} B_{2} \\ & A_{3} \end{aligned}$
28 Pma 2					$\begin{gathered} h 00 \\ a \end{gathered}$	$\begin{aligned} & A_{1} B_{2} \\ & A_{3} \end{aligned}$					a	$\begin{aligned} & A_{2} B_{2} \\ & A_{3} \end{aligned}$
$29 \mathrm{Pca} 2_{1}$	$\begin{gathered} 001 \\ 2_{1} \end{gathered}$	B_{3}	$\begin{aligned} & 001 \\ & c, 2_{1} \end{aligned}$	$\begin{aligned} & A_{2} B_{2} \\ & A_{3} B_{3} \end{aligned}$	$\begin{gathered} h 00 \\ a \end{gathered}$	$\begin{aligned} & A_{2} B_{2} \\ & A_{3} \end{aligned}$	21	$\begin{array}{r} A_{2} B_{2} \\ B_{3} \end{array}$	c	$\begin{aligned} & A_{2} B_{2} \\ & A_{3} \end{aligned}$	a	$\begin{aligned} & A_{2} B_{2} \\ & A_{3} \end{aligned}$
30 Pnc2	$\begin{gathered} 001 \\ c \end{gathered}$	A_{3}	$\begin{gathered} 001 \\ n \end{gathered}$	A_{3}	$\begin{gathered} 0 k 0 \\ n \end{gathered}$	$\begin{aligned} & A_{2} B_{2} \\ & A_{3} \end{aligned}$			n	$\begin{aligned} & A_{1} B_{2} \\ & A_{3} \end{aligned}$	c	$\begin{aligned} & A_{2} B_{2} \\ & A_{3} \end{aligned}$
31 Pmn2,	$\begin{array}{r} 001 \\ n, 2 \end{array}$	$\begin{aligned} & A_{2} B_{2} \\ & A_{3} B_{3} \end{aligned}$	$\begin{gathered} 001 \\ 2 \end{gathered}$	B_{3}	$\begin{gathered} h 00 \\ n \end{gathered}$	$\begin{aligned} & A_{2} B_{2} \\ & A_{3} \end{aligned}$	21	$\begin{array}{r} A_{2} B_{2} \\ B_{3} \end{array}$			n	$\begin{aligned} & A_{2} B_{2} \\ & A_{3} \end{aligned}$
32 Pba 2					$\begin{gathered} h 00 \\ a \\ 0 k 0 \\ b \end{gathered}$	$\begin{aligned} & A_{2} B_{2} \\ & A_{3} \end{aligned}$			b	$\begin{aligned} & A_{2} B_{2} \\ & A_{3} \end{aligned}$	a	$\begin{aligned} & A_{2} B_{2} \\ & A_{3} \end{aligned}$
33 Pra2,	$\begin{gathered} 001 \\ 2_{1} \end{gathered}$	B_{3}	$\begin{gathered} 001 \\ n, 2_{1} \end{gathered}$	$\begin{aligned} & A_{2} B_{2} \\ & A_{3} B_{3} \end{aligned}$	$\begin{gathered} h 00 \\ a \\ 0 k 0 \\ n \end{gathered}$	$\begin{aligned} & A_{2} B_{2} \\ & A_{3} \end{aligned}$	21	$\begin{array}{r} A_{1} B_{2} \\ B_{3} \end{array}$	n	$\begin{aligned} & A_{2} B_{2} \\ & A_{3} \end{aligned}$	a	$A_{2} B_{2}$
34 Pnn2	$\begin{gathered} 001 \\ n_{2} \end{gathered}$	A_{3}	$\begin{gathered} 001 \\ n_{1} \end{gathered}$	A_{3}	$\begin{gathered} h 00 \\ n_{2} \\ 0 k 0 \\ n_{1} \end{gathered}$	$\begin{aligned} & A_{2} B_{2} \\ & A_{3} \end{aligned}$			n,	$\begin{aligned} & A_{2} B_{2} \\ & A_{3} \end{aligned}$	n_{2}	$\begin{aligned} & A_{2} B_{2} \\ & A_{3} \end{aligned}$
${ }_{35} \underset{b a 2}{\mathrm{Cmm} 2}$												
${ }^{36} \begin{gathered} \mathrm{CmC}_{1} \\ b n 2_{1} \end{gathered}$	$\begin{gathered} 00 t \\ c, 2 \end{gathered}$	$\begin{aligned} & A_{2} B_{2} \\ & A_{3} B_{3} \end{aligned}$	$\begin{gathered} 00! \\ 2_{1} \end{gathered}$	B_{3}			21	$\begin{gathered} A_{2} B_{2} \\ B_{3} \end{gathered}$			c	$\begin{aligned} & A_{2} B_{2} \\ & A_{3} \end{aligned}$
$\begin{array}{r} \mathrm{Ccc} 2 \\ 37 \quad n n 2 \end{array}$	$\begin{gathered} 001 \\ c_{2} \end{gathered}$	A_{3}	$\begin{gathered} 001 \\ c_{1} \end{gathered}$	A_{3}					c_{1}	$\begin{aligned} & A_{2} B_{2} \\ & A_{3} \end{aligned}$	c_{2}	$\begin{aligned} & A_{2} B_{2} \\ & A_{3} \end{aligned}$
$\begin{gathered} 38 \\ \begin{array}{r} A m m 2 \\ n c 2 \end{array}, ~ \end{gathered}$												
$\begin{array}{r} 39 \\ \quad \mathrm{Abm} 2 \\ c c 2_{1} \end{array}$									b	$\begin{aligned} & A_{2} B_{2} \\ & A_{3} \end{aligned}$		
$\begin{gathered} \\ 40 \\ \quad A m a 2 \\ n m 2 \end{gathered}$					$\begin{gathered} h 00 \\ a \end{gathered}$	$\begin{aligned} & A_{2} B_{2} \\ & A_{3} \end{aligned}$					a	$\begin{aligned} & A_{2} B_{2} \\ & A_{3} \end{aligned}$
$\begin{gathered} 41 \begin{array}{c} A b a 2 \\ c n 2 \end{array}, ~ \end{gathered}$					$\begin{gathered} h 00 \\ a \end{gathered}$	$\begin{aligned} & A_{2} B_{2} \\ & A_{3} \end{aligned}$			b	$\begin{aligned} & A_{2} B_{2} \\ & A_{3} \end{aligned}$	a	$\begin{aligned} & A_{2} B_{2} \\ & A_{3} \end{aligned}$
42 Fmm 2												
	001	,	001		$\begin{gathered} h 00 \\ h=4 n \end{gathered}$				$k^{\prime}+{ }^{\prime}$		$h^{\prime}+l^{\prime}$	
$43 \begin{array}{r} F d d 2 \\ 2, \end{array}$	$\begin{gathered} l=4 n+2 \\ d_{2} \end{gathered}$	A_{3}	$t=\frac{4 n}{d_{1}}+2$	A_{3}	$\begin{array}{r} d_{2} \\ 0 k 0 \\ k=4 n \\ d_{1} \end{array}$	$\begin{aligned} & A_{2} B_{2} \\ & A_{3} \end{aligned}$			$\begin{gathered} =4 n+2 \\ d_{1} \end{gathered}$	$\begin{aligned} & A_{2} B_{2} \\ & A_{3} \end{aligned}$	$\begin{gathered} =4 n+2 \\ d_{2} \end{gathered}$	$\begin{aligned} & A_{2} B_{2} \\ & A_{3} \end{aligned}$
$44 \begin{gathered} \mathrm{Imm} 2 \\ n n 2_{1} \end{gathered}$												
${ }_{45} \begin{gathered} l b a 2 \\ c c 2, \end{gathered}$									b	$\begin{aligned} & A_{2} B_{2} \\ & A_{3} \end{aligned}$	a	$\begin{aligned} & A_{1} B_{2} \\ & A_{3} \end{aligned}$
${ }_{46} \begin{gathered} I m a 2 \\ n c 2 \end{gathered}$											a	$\begin{aligned} & A_{1} B_{2} \\ & A_{3} \end{aligned}$

Table 5. GM lines for point group mmm

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \& \multicolumn{12}{|c|}{Incident beam direction}

\hline Space group \& \multicolumn{2}{|c|}{[100]} \& \multicolumn{2}{|c|}{[010]} \& \multicolumn{2}{|c|}{[001]} \& \multicolumn{2}{|c|}{[$h \mathrm{k} 0$]} \& \multicolumn{2}{|c|}{[0kl]} \& \multicolumn{2}{|c|}{[h0l]}

\hline \multicolumn{13}{|l|}{$47 \mathrm{P} 2 / \mathrm{m} 2 / \mathrm{m} 2 / \mathrm{m}$}

\hline \& 001 \& \& 001 \& \& 0 k 0 \& \& \& \& \& \& \&

\hline $48 \mathrm{P} 2 / \mathrm{n} 2 / \mathrm{n} 2 / n$ \& $$
\begin{aligned}
& n_{2} \\
& 0 k 0 \\
& n_{3}
\end{aligned}
$$ \& A_{3} \& $$
\begin{gathered}
n_{1} \\
h 00 \\
n_{3}
\end{gathered}
$$ \& A_{3} \& $$
\begin{gathered}
n_{1} \\
h 00 \\
n_{2}
\end{gathered}
$$ \& A_{3} \& $$
\begin{gathered}
h^{\prime} k^{\prime} 0 \\
n_{3}
\end{gathered}
$$ \& $$
\begin{aligned}
& A_{2} B_{2} \\
& A_{3}
\end{aligned}
$$ \& $$
\begin{gathered}
O k^{\prime} l^{\prime} \\
n_{1}
\end{gathered}
$$ \& $$
\begin{aligned}
& A_{1} B_{2} \\
& A_{3}
\end{aligned}
$$ \& $$
\begin{gathered}
h^{\prime} O l^{\prime} \\
n_{2}
\end{gathered}
$$ \& $$
\begin{aligned}
& A_{2} B_{2} \\
& A_{3}
\end{aligned}
$$

\hline $49 \mathrm{P} 2 / \mathrm{c} 2 / \mathrm{c} 2 / \mathrm{m}$ \& $$
\begin{gathered}
001 \\
c_{2}
\end{gathered}
$$ \& A_{3} \& $$
\begin{gathered}
00 l \\
c_{1}
\end{gathered}
$$ \& A_{3} \& \& \& \& \& $$
\begin{gathered}
0 k^{\prime} l^{\prime} \\
c_{1}
\end{gathered}
$$ \& $$
\begin{aligned}
& A_{2} B_{2} \\
& A_{3}
\end{aligned}
$$ \& $$
\begin{gathered}
h^{\prime} 0 l^{\prime} \\
c_{2}
\end{gathered}
$$ \& $$
\begin{aligned}
& A_{2} B_{2} \\
& A_{3}
\end{aligned}
$$

\hline 50 P2/b2/a $2 / n$ \& $$
\begin{gathered}
0 k 0 \\
n
\end{gathered}
$$ \& A_{3} \& $$
\begin{gathered}
h 00 \\
n
\end{gathered}
$$ \& A_{3} \& $$
\begin{gathered}
0 k 0 \\
b \\
h 00 \\
a
\end{gathered}
$$ \& A_{3} \& $$
\begin{gathered}
h^{\prime} k^{\prime} 0 \\
n
\end{gathered}
$$ \& $A_{2} B_{2}$
A_{3} \& $$
\begin{gathered}
0 k^{\prime} I^{\prime} \\
b
\end{gathered}
$$ \& $$
\begin{aligned}
& A_{2} B_{2} \\
& A_{3}
\end{aligned}
$$ \& $$
\begin{gathered}
h^{\prime} 0 l^{\prime} \\
a
\end{gathered}
$$ \& $$
\begin{aligned}
& A_{2} B_{2} \\
& A_{3}
\end{aligned}
$$

\hline $51 P 2, / m 2 / m 2 / a$ \& \& \& $$
\begin{aligned}
& h 00 \\
& 2_{1}, a
\end{aligned}
$$ \& $$
\begin{aligned}
& A_{2} B_{2} \\
& A_{3} B_{3}
\end{aligned}
$$ \& $$
\begin{gathered}
h 00 \\
\mathbf{2}_{1}
\end{gathered}
$$ \& B_{3} \& $$
\begin{gathered}
h^{\prime} k^{\prime} 0 \\
a
\end{gathered}
$$ \& $$
\begin{aligned}
& A_{2} B_{2} \\
& A_{3}
\end{aligned}
$$ \& $$
\begin{gathered}
h 00 \\
2,
\end{gathered}
$$ \& $$
\begin{array}{r}
A_{2} B_{2} \\
B_{3}
\end{array}
$$ \& \&

\hline \& 001 \& \& 001 \& \& 0 k 0 \& $A_{2} B_{2}$ \& \& \& \& \& $h^{\prime} 0{ }^{\prime \prime}$ \& $A_{2} B_{2}$

\hline $52 P 2 / n 2_{1} / n 2 / a$ \& $$
\begin{gathered}
n_{2} \\
0 k 0 \\
2_{1}
\end{gathered}
$$ \& A

B_{3} \& \[
$$
\begin{gathered}
n_{1} \\
h 00 \\
a
\end{gathered}
$$

\] \& A_{3} \& \[

$$
\begin{gathered}
n_{1}, 2_{1} \\
h 00 \\
n_{2}
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& A_{3} B_{3} \\
& A_{3}
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
h^{\prime} k^{\prime} 0 \\
a
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& A_{2} B_{2} \\
& A_{3}
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
O k^{\prime} l^{\prime} \\
n_{1}
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& A_{2} B_{2} \\
& A_{3}
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
n_{2} \\
0 k 0 \\
2_{1}
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& A_{3} \\
& A_{2} B_{2} \\
& B_{3}
\end{aligned}
$$
\]

\hline $53 P 2 / m 2 / n 2 / a$ \& \[
$$
\begin{gathered}
001 \\
n, 2_{t}
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& A_{2} B_{2} \\
& A_{3} B_{3}
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
h 00 \\
a \\
00 l \\
21
\end{gathered}
$$
\] \& A

B_{3} \& \[
$$
\begin{gathered}
h(0) \\
n
\end{gathered}
$$

\] \& A_{3} \& \[

$$
\begin{gathered}
h^{\prime} k^{\prime} 0 \\
a \\
001 \\
2
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& A_{2} B_{2} \\
& A_{3} \\
& A_{2} B_{2} \\
& \quad B_{\mathrm{J}}
\end{aligned}
$$

\] \& \& \& \[

$$
\begin{gathered}
h^{\prime} O I^{\prime} \\
n
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& A_{2} B_{2} \\
& A_{3}
\end{aligned}
$$
\]

\hline $54 P 2{ }_{1} / c 2 / c 2 / a$ \& \[
$$
\begin{aligned}
& 001 \\
& c_{2}
\end{aligned}
$$

\] \& A_{3} \& \[

$$
\begin{gathered}
001 \\
c_{1} \\
h 00 \\
a, 2_{1}
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& A_{3} \\
& A_{2} B_{2} \\
& A_{3} B_{3}
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
h 00 \\
\mathbf{2}_{1}
\end{gathered}
$$

\] \& B_{3} \& \[

$$
\begin{gathered}
h^{\prime} k^{\prime} 0 \\
a
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& A_{2} B_{2} \\
& A_{3}
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
0 k^{\prime} l^{\prime} \\
c_{1} \\
h 00 \\
2_{1}
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& A_{2} B_{2} \\
& A_{3} \\
& A_{2} \\
& B_{2} \\
& \\
& B_{3}
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
h^{\prime} 0 l^{\prime} \\
c_{2}
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& A_{2} B_{2} \\
& A_{3}
\end{aligned}
$$
\]

\hline $55 P 2, / b 2, / a 2 / m$ \& \[
$$
\begin{gathered}
0 k 0 \\
2_{12}
\end{gathered}
$$

\] \& B_{3} \& \[

$$
\begin{gathered}
h 00 \\
2_{11}
\end{gathered}
$$

\] \& B_{3} \& | 0 kO |
| :--- |
| b, $\mathbf{2}_{12}$ |
| hoo |
| a. 2_{11} | \& \[

$$
\begin{aligned}
& A_{2} B_{2} \\
& A_{3} B_{3}
\end{aligned}
$$

\] \& \& \& \[

$$
\begin{gathered}
0 k^{\prime} l^{\prime} \\
b \\
h 00 \\
2_{11}
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& A_{2} B_{2} \\
& A_{3} \\
& A_{2} B_{2} \\
& B_{3}
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
h^{\prime} 0 l^{\prime} \\
a \\
0 k 0 \\
2_{12}
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& A_{2} B_{2} \\
& A_{3} \\
& A_{2} B_{2} \\
& \quad B_{3}
\end{aligned}
$$
\]

\hline $56 P 2{ }_{1} / c 2_{1} / c 2 / n$ \& \[
$$
\begin{gathered}
001 \\
c_{2} \\
0 k 0 \\
2_{12}, n
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& A_{3} \\
& A_{2} B_{2} \\
& A_{3} B_{3}
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
00 l \\
c_{t} \\
h 00 \\
2_{11}, n
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& A_{3} \\
& A_{2} B_{2} \\
& A_{3} B_{3}
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
0 k 0 \\
\mathbf{2}_{12} \\
h 00 \\
\mathbf{2}_{11}
\end{gathered}
$$

\] \& B_{3} \& \[

$$
\begin{gathered}
h^{\prime} k^{\prime} 0 \\
n
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& A_{2} B_{2} \\
& A_{3}
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
0 k^{\prime} l^{\prime} \\
c_{1} \\
h 00 \\
2_{11}
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& A_{2} B 2 \\
& A_{3} \\
& A_{2} B_{2} \\
& B_{3}
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
h^{\prime} 0 l^{\prime} \\
c_{2} \\
0 k 0 \\
2_{12}
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& A_{2} B_{2} \\
& A_{3} \\
& A_{2} B_{2} \\
& B_{3}
\end{aligned}
$$
\]

\hline $57 P 2 / b 2_{1} / c 2_{1} / m$ \& \[
$$
\begin{gathered}
00 l \\
c, 2_{12} \\
0 k 0 \\
\mathbf{2}_{11}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
A_{2} B_{2} \\
A_{3} B_{3} \\
B_{3}
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 001 \\
& 2_{12}
\end{aligned}
$$

\] \& B_{3} \& \[

$$
\begin{gathered}
0 k 0 \\
b, 2_{11}
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& A_{2} B_{2} \\
& A_{3} B_{3}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 001 \\
& 2_{12}
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
A_{2} B_{2} \\
B_{3}
\end{array}
$$

\] \& \[

$$
\begin{gathered}
0 k^{\prime} l^{\prime} \\
b
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& A_{2} B_{2} \\
& A_{3}
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
h^{\prime} 0 l^{\prime} \\
c \\
0 k 0 \\
2_{11}
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& A_{2} B_{2} \\
& A_{3} \\
& A_{1} B_{2} \\
& B_{3}
\end{aligned}
$$
\]

\hline $58 P 2_{1} / n 2_{1} / n 2 / m$ \& $$
\begin{gathered}
001 \\
n_{2} \\
0 k 0 \\
2_{12}
\end{gathered}
$$ \& A

f

B_{3} \& $$
\begin{gathered}
001 \\
n_{1} \\
h 00 \\
2_{11}
\end{gathered}
$$ \& A

B_{3} \& \[
$$
\begin{gathered}
0 k 0 \\
n_{1}, 2_{12} \\
h 00 \\
n_{2}, 2_{11}
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& A_{2} B_{2} \\
& A_{3} B_{3}
\end{aligned}
$$

\] \& \& \& \[

$$
\begin{gathered}
0 k^{\prime} l^{\prime} \\
n_{1} \\
h 00 \\
2_{11}
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& A_{2} B_{2} \\
& A_{3} \\
& A_{2} B_{2} \\
& \quad B_{3}
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
h^{\prime} O l^{\prime} \\
n_{2} \\
0 k 0 \\
2_{12}
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& A_{2} B_{2} \\
& A_{3} \\
& A_{2} B_{2} \\
& B_{3}
\end{aligned}
$$
\]

\hline $59 P 21_{1} / m 2_{1} / m 2 / n$ \& \[
$$
\begin{gathered}
0 k 0 \\
n, 2_{12}
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& A_{2} B_{2} \\
& A_{3} B_{3}
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
h 00 \\
n, 2_{11}
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& A_{2} B_{2} \\
& A_{3} B_{3}
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
0 k 0 \\
2_{12} \\
h 00 \\
\mathbf{2}_{11}
\end{gathered}
$$

\] \& B_{3} \& \[

$$
\begin{gathered}
h^{\prime} k^{\prime} 0 \\
n
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& A_{2} B_{2} \\
& A_{3}
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
h 00 \\
2_{11}
\end{gathered}
$$

\] \& \[

$$
\begin{array}{r}
A_{2} B_{2} \\
B_{3}
\end{array}
$$

\] \& \[

$$
\begin{gathered}
O K 0 \\
2_{12}
\end{gathered}
$$

\] \& \[

$$
\begin{array}{r}
A_{2} B_{2} \\
B_{3}
\end{array}
$$
\]

\hline $60 \mathrm{P} 2, / b 2 / c 2_{1} / n$ \& \[
$$
\begin{gathered}
001 \\
c, 2_{12} \\
0 k 0 \\
n
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& A_{2} B_{2} \\
& A_{3} B_{3} \\
& A_{3}
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
h 00 \\
n, 2_{11} \\
00 l \\
2_{12}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
A_{2} B_{2} \\
A_{3} B_{3} \\
\\
\quad B_{3}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 k 0 \\
b \\
400 \\
2 \\
2
\end{gathered}
$$
\] \& A

B_{3} \& \[
$$
\begin{gathered}
h^{\prime} k^{\prime} 0 \\
n \\
00 l \\
2_{12}
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& A_{2} B_{2} \\
& A_{3} \\
& A_{2} B_{2} \\
& B_{3}
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
O k^{\prime} l^{\prime} \\
b \\
h 00 \\
2_{11}
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& A_{2} B_{2} \\
& A_{3} \\
& A_{2} B_{2} \\
& B_{3}
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
h^{\prime} O l^{\prime} \\
c
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& A_{2} B_{2} \\
& A_{3}
\end{aligned}
$$
\]

\hline $61 P 2_{1} / b 2_{1} / c 2_{1} / a$ \& \[
$$
\begin{gathered}
001 \\
c, 2_{13} \\
0 k 0 \\
2_{12}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
A_{2} B_{2} \\
A_{3} B_{3} \\
\\
B_{3}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
001 \\
2_{13} \\
h 00 \\
a, 2_{11}
\end{gathered}
$$

\] \& \[

$$
\begin{array}{r}
B_{3} \\
A_{2} B_{2} \\
A_{3} B_{3}
\end{array}
$$

\] \& \[

$$
\begin{gathered}
0 k 0 \\
b .2_{12} \\
h 00 \\
2_{11}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
A_{2} B_{2} \\
A_{3} B_{3} \\
\\
B_{3}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
h^{\prime} k^{\prime} 0 \\
a \\
00 / \\
2_{13}
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& A_{2} B_{2} \\
& A_{3} \\
& A_{2} B_{2} \\
& B_{3}
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
0 k^{\prime} l^{\prime} \\
b \\
h 00 \\
2_{\mathrm{l}}
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& A_{2} B_{2} \\
& A_{3} \\
& A_{2} B_{2} \\
& B_{3}
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
0 k^{\prime} l^{\prime} \\
c \\
0 k 0 \\
2_{12}
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& A_{2} B_{2} \\
& A_{3} \\
& A_{2} B_{2} \\
& B_{3}
\end{aligned}
$$
\]

\hline $62 P 2_{1} / n 2_{1} / m 2_{1} / a$ \& \[
$$
\begin{gathered}
001 \\
2_{13} \\
0 k 0 \\
2_{12}
\end{gathered}
$$

\] \& B_{3} \& \[

$$
\begin{gathered}
001 \\
n, 2_{13} \\
h 00 \\
a, 2_{11}
\end{gathered}
$$

\] \& \[

$$
\begin{array}{ll}
A_{2} & B_{2} \\
A_{3} & B_{3}
\end{array}
$$

\] \& \[

$$
\begin{gathered}
0 k 0 \\
n, 2_{12} \\
h 00 \\
2_{11}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
A_{2} B_{2} \\
A_{3} B_{3} \\
\\
\quad B_{3}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
h^{\prime} k^{\prime} 0 \\
a \\
001 \\
2_{11}
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& A_{2} B_{2} \\
& A_{3} \\
& A_{2} B_{2} \\
& B_{3}
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
0 k^{\prime} l^{\prime} \\
n \\
h 00 \\
\mathbf{2}_{11}
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& A_{2} B_{2} \\
& A_{3} \\
& A_{2} B_{2} \\
& B_{3}
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
0 k 0 \\
2_{12}
\end{gathered}
$$

\] \& \[

$$
\begin{array}{r}
A_{2} B_{2} \\
B_{3}
\end{array}
$$
\]

\hline $63 \mathrm{C} 2 / \mathrm{m} 2 / \mathrm{c} 2_{1} / \mathrm{m}$ \& \[
$$
\begin{gathered}
001 \\
c, 2_{1}
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& A_{2} B_{2} \\
& A_{1} B_{3}
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
001 \\
2_{1}
\end{gathered}
$$

\] \& B_{3} \& \& \& \[

$$
\begin{gathered}
001 \\
2_{1}
\end{gathered}
$$

\] \& \[

$$
\begin{array}{r}
A_{2} B_{2} \\
B_{1}
\end{array}
$$

\] \& \& \& \[

$$
\begin{gathered}
0 k^{\prime} l^{\prime} \\
c
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& A_{2} B_{2} \\
& A_{3}
\end{aligned}
$$
\]

\hline $64 C 2 / m 2 / c_{1} / a$ \& \[
$$
\begin{gathered}
001 \\
c, 2
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& A_{2} B_{2} \\
& A_{3} B_{3}
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
00 l \\
2_{1}
\end{gathered}
$$

\] \& B_{3} \& \& \& \[

$$
\begin{gathered}
h^{\prime} k^{\prime} 0 \\
a \\
00 l \\
2_{1}
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& A_{2} B_{2} \\
& A_{3} \\
& A_{2} B_{2} \\
& \\
& B_{3}
\end{aligned}
$$

\] \& \& \& \[

$$
\begin{gathered}
O k^{\prime} l^{\prime} \\
c
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& A_{2} B_{2} \\
& A_{3}
\end{aligned}
$$
\]

\hline
\end{tabular}

Table 5. (cont.)

Space group	[100]		[010		Incident beam direction [001] [hk0]				[0kl]		[HOL]	
$65 \mathrm{C} 2 / \mathrm{m} 2 / \mathrm{m} 2 / \mathrm{m}$												
$66 \mathrm{C} 2 / \mathrm{c} 2 / \mathrm{c} 2 / \mathrm{m}$	$\begin{aligned} & 001 \\ & c_{2} \end{aligned}$	A ${ }^{\text {a }}$	$\begin{aligned} & 001 \\ & c_{1} \end{aligned}$	A_{3}					$\begin{gathered} 0 k^{\prime} i^{\prime} \\ c_{1} \end{gathered}$	$\begin{aligned} & A_{2} B_{2} \\ & A_{3} \end{aligned}$	$\begin{gathered} 0 k^{\prime} l^{4} \\ c_{2} \end{gathered}$	$\begin{aligned} & A_{2} B_{2} \\ & A_{3} \end{aligned}$
$67 \mathrm{C} 2 / \mathrm{m} 2 / \mathrm{m} 2 / a$							$\begin{gathered} h^{\prime} k^{\prime} 0 \\ a \end{gathered}$	$\begin{aligned} & A_{2} B_{2} \\ & A_{3} \end{aligned}$				
$68 \mathrm{C} 2 / \mathrm{c} 2 / \mathrm{c} 2 / a$	$\begin{gathered} 001 \\ c_{2} \end{gathered}$	A_{3}	$\begin{gathered} 001 \\ c_{1} \end{gathered}$	A_{3}			$\begin{gathered} h^{\prime} k^{\prime} 0 \\ a \end{gathered}$	$\begin{aligned} & A_{2} B_{2} \\ & A_{3} \end{aligned}$	$\begin{gathered} 0 k^{\prime} l^{\prime} \\ c_{1} \end{gathered}$	$\begin{aligned} & A_{2} B_{2} \\ & A_{3} \end{aligned}$	$\begin{gathered} h^{\prime} 0 l^{\prime} \\ c_{2} \end{gathered}$	$\begin{aligned} & A_{2} B_{2} \\ & A_{3} \end{aligned}$
$69 \mathrm{~F} 2 / \mathrm{m} 2 / \mathrm{m} 2 / \mathrm{m}$												
$70 \mathrm{~F} 2 / \mathrm{d} 2 / \mathrm{d} 2 / \mathrm{d}$	$\begin{gathered} 00 l \\ l=4 n+2 \\ d_{2} \\ 0 k 0 \\ k=4 n+2 \\ d_{3} \end{gathered}$	A_{3}	$\begin{gathered} h 00 \\ h=4 n+2 \\ d_{3} \\ 00 l \\ l=4 n+2 \\ d_{1} \end{gathered}$	A_{3}	$\begin{gathered} 0 k 0 \\ k=4 n+2 \\ d_{1} \\ h 00 \\ h=4 n+2 \\ d_{2} \end{gathered}$	A_{3}	$\begin{gathered} h^{\prime} k^{\prime} 0 \\ h^{\prime}+k^{\prime} \\ =4 n+2 \\ d_{3} \end{gathered}$	$\begin{aligned} & A_{2} B_{2} \\ & A_{3} \end{aligned}$	$\begin{gathered} 0 k^{\prime} l^{\prime} \\ k^{\prime}+l^{\prime} \\ =4 n+2 \\ d_{1} \end{gathered}$	$\begin{aligned} & A_{2} B_{2} \\ & A_{3} \end{aligned}$	$\begin{gathered} h^{\prime} 0 l^{\prime} \\ h^{\prime}+l^{\prime} \\ =4 n+2 \\ d_{2} \end{gathered}$	$\begin{aligned} & A_{2} B_{2} \\ & A_{3} \end{aligned}$
$71 \mathrm{I} 2 / \mathrm{m} 2 / \mathrm{m} 2 / \mathrm{m}$												
$72 \mathrm{I} 2 / \mathrm{b} 2 / a 2 / \mathrm{m}$									$\begin{gathered} 0 k^{\prime} l^{\prime} \\ b \end{gathered}$	$\begin{aligned} & A_{2} B_{2} \\ & A_{3} \end{aligned}$	$\begin{gathered} h^{\prime} 0 l^{\prime} \\ a \end{gathered}$	$\begin{aligned} & A_{2} B_{2} \\ & A_{3} \end{aligned}$
$73 \mathrm{I} 2 / \mathrm{b} 2 / \mathrm{c} 2 / a$							$\begin{gathered} h^{\prime} k^{\prime} 0 \\ a \end{gathered}$	$\begin{aligned} & A_{2} B_{2} \\ & A_{3} \end{aligned}$	$\begin{gathered} 0 k^{\prime} l^{\prime} \\ b \end{gathered}$	$\begin{aligned} & A_{2} B_{2} \\ & A_{3} \end{aligned}$	$\begin{gathered} h^{\prime} 0 l^{\prime} \\ c \end{gathered}$	$\begin{aligned} & A_{2} B_{2} \\ & A_{3} \end{aligned}$
$74 \mathrm{I} 2 / \mathrm{m} 2 / \mathrm{m} 2 / a$							$\begin{gathered} h^{\prime} k^{\prime} 0 \\ a \end{gathered}$	$\begin{aligned} & A_{2} B_{2} \\ & A_{3} \end{aligned}$				

at the midpoint of the specimen, and (4) the fourfold rotary inversion 4 whose axis is parallel to the surface normal.

Three space-group symmetry elements of the specimen are added to the point-group symmetry elements: (1) the vertical glide plane g whose glide vector is parallel to the specimen surface, (2) the horizontal twofold screw axis 2_{1}^{\prime} and (3) the horizontal glide plane g^{\prime}, which are related to the point-group elements $m, 2^{\prime}$ and m^{\prime}, respectively. It is noted that the $2_{1}, 3_{1}, 3_{2} \ldots, 6_{5}$ screw axes which are parallel to the surface normal and the vertical glide plane whose glide translation is parallel to the surface normal are not included in the symmetry elements of the specimen.

We summarize the dynamic extinction rules for g, g^{\prime} and 2_{1}^{\prime} given by Gjønnes \& Moodie (1965) in Table 1 using our notation. The symbols A and B indicate the GM lines as depicted in Fig. 1. The A line runs along the screw axis or the glide translation and through the zone axis of projection. The B line is perpendicular to the A line and at the exact Bragg positions. The suffixes 2 and 3 indicate that the GM lines are formed by the two-dimensional or zeroth Laue-zone interaction and by the three-dimensional or higher Laue-zone interaction, respectively.

Based on the dynamic extinction rules for the symmetry elements g and 2_{1}^{\prime} of a plane-parallel specimen,* we have investigated the GM line rules

[^1]expected from the symmetry elements of three-dimensional crystal space groups.

1. When the $2_{1}, 4_{1}, 4_{3}, 6_{1}, 6_{3}$ and 6_{5} screw axes of crystal space groups are set perpendicular to the incident beam, they act as the screw axis 2_{1}^{\prime} of the plane-parallel specimen, because of the relation $\left(4_{1}\right)^{2}=$ $\left(4_{3}\right)^{2}=\left(6_{1}\right)^{3}=\left(6_{3}\right)^{3}=\left(6_{5}\right)^{3}=2_{1}$. The $4_{2}, 3_{1}, 3_{2}, 6_{2}$ and 6_{4} screw axes do not produce GM lines, since the 4_{2} axis acts as a twofold axis in the specimen by the relation $\left(4_{2}\right)^{2}=2$, the horizontal threefold screw axis is not included as the symmetry element of the specimen and the 6_{2} and 6_{4} screw axes are equivalent to 3_{1} and 3_{2} by the relations $\left(6_{2}\right)^{2}=3_{2}$ and $\left(6_{4}\right)^{2}=3_{1}$.
2. When two 2_{1} screw axes or the equivalent axes are present perpendicularly, the GM line rules deduced from a single 2_{1} screw axis hold for each axis.
3. When the lattice symbol I or F is combined with the 2_{1} axis or the equivalent axis, GM lines due to the axis are not formed, since the lattice types prohibit Umweganregung of the forbidden reflections due to the screw axis. As a result, for instance space groups 14 and $I 4_{1}$ cannot be distinguished by dynamic extinction. The combination of the lattice type A and the 2_{1} screw axis in the c direction also produces no GM line. However, the combination does not appear in the standard notation of the space groups.
4. When the glide planes a, b, c, n and d of crystal space groups lie parallel to the incident beam and their glide translations are not parallel to the incident beam, they act as the glide plane g of the plane-parallel specimen. It is noted that the glide translation does not necessarily make a right angle with the incident beam to cause GM lines.
5. When the lattice type I or F is combined with the a-, b - or c-glide plane, GM lines due to the plane are not produced in $h 00,0 k 0$ and/or $00 l$ (h, k and l odd)

Table 6. GM lines for point groups $4, \overline{4}$ and $4 / m$

Table 8. GM lines for point group 4 mm

respectively. Similarly, when the lattice type C is combined with the a - or b-glide plane in the (001) plane, GM lines are not produced in the $h 00$ or $0 k 0$ (h and k odd) reflections, respectively. The case of the lattice type B is omitted. For example, space groups $A b m 2$ and Cmma come under this heading.
6. The incident beam is assumed to impinge so as to form GM lines by a screw axis or a glide plane. Another glide plane is assumed to be present perpendicular to the incident beam and its glide translation is not perpendicular to the screw axis or to the glide translation of the former glide plane (Fig. 2). In such a case the two-dimensional GM lines A_{2} and B_{2} due to the screw axis or the former glide plane are not produced, since the latter glide plane prohibits Umweganregung routes in the zeroth Laue zone to excite the forbidden reflections due to the former symmetry elements. An example is the space group $P 2_{1} / a \overline{3}$, in which only the $B_{3} \mathrm{GM}$ line is produced at the [100] electron incidence by the 2_{1} axis lying in the [010] direction.

Dynamic extinction tables

Using the dynamic extinction rules described in the previous section, we have examined all space groups for which GM lines A_{2}, A_{3}, B_{2} and B_{3} are formed at
various crystal settings. For the examination, we postulate that the atoms occupy the general positions of a space group and do not consider the forbidden reflections caused by the special positions. We have to consult the full symbols of space groups, otherwise we may overlook some glide planes and screw axes.

The results are shown in Tables 2 to 16 . The space groups are written in the first column of the tables. The expected GM lines are shown for various incident-beam directions in the following columns. We give details in the following examples which are necessary to understand the tables. For instance, the intersection of the third row and the fourth column in Table 3 shows that two-dimensional GM lines A_{2} and B_{2} and the threedimensional GM line B_{3} are produced at [001] electron incidence in the odd-order $h 00$ and $0 k 0$ reflections by the 2_{1} screw axes of space group $P 2_{1} 2_{1} 2$. The second suffixes 1 and 2 of the symbols 2_{11} and 2_{12} distinguish between the first (in the a direction) and the second (in the \mathbf{b} direction) scew axes of the space group. The glide symbols in the second column for space group $P 4 / n n c$ (Table 10) have two suffixes (n_{21} and n_{22}). The first suffix 2 denotes the second glide plane between two n-glide planes of the space group. The second suffixes 1 and 2 , which appear in the tetragonal and cubic systems, distinguish two equivalent glide planes which lie in the x and y planes. The equivalent planes are

Table 9. GM lines for point group $\overline{4} 2 m$

Space group			Incident beam direction$[110]$				[0kl]		[hhl]	
$111 \mathrm{P} \overline{4} 2 \mathrm{~m}$										
$112 P \overline{4} 2 c$					001	A_{3}			$\begin{gathered} h^{\prime} h^{\prime} l^{\prime} \\ c \end{gathered}$	$\begin{aligned} & A_{2} B_{2} \\ & A_{3} \end{aligned}$
$113 P \overline{4} 2, m$	$\begin{gathered} 0 k 0 \\ 2_{12} \end{gathered}$	$\begin{array}{r} A_{2} B_{2} \\ B_{3} \end{array}$	$\begin{gathered} h 00 \\ 2_{11} \\ 0 k 0 \\ 2_{12} \end{gathered}$	$\begin{array}{r} A_{2} B_{2} \\ B_{3} \end{array}$			$\begin{gathered} h 00 \\ 2_{1} \end{gathered}$	$\begin{array}{r} A_{1} B_{2} \\ B_{3} \end{array}$		
$114 \mathrm{P}^{\mathbf{4} 2}{ }_{4} \mathrm{C}$	$\begin{gathered} 0 k 0 \\ 2_{12} \end{gathered}$	$\begin{array}{r} A_{2} B_{2} \\ B_{3} \end{array}$	$\begin{gathered} h 00 \\ 2_{11} \\ 0 k 0 \\ 2_{12} \end{gathered}$	$\begin{array}{r} A_{2} B_{2} \\ B_{3} \end{array}$	$\begin{gathered} 001 \\ c \end{gathered}$	A_{3}	$\begin{gathered} h 00 \\ 2_{1} \end{gathered}$	$\begin{gathered} A_{2} B_{2} \\ B_{3} \end{gathered}$	c	$\begin{aligned} & A_{2} B_{2} \\ & A_{3} \end{aligned}$
$1158 \bar{P}_{\text {m }}{ }^{2}$										
$116 \mathrm{P} \overline{4} \mathrm{C} 2$	$\begin{gathered} 001 \\ c_{2} \end{gathered}$	A_{3}					$\begin{gathered} 0 k^{\prime} l^{\prime} \\ c \end{gathered}$	$\begin{aligned} & A_{2} B_{2} \\ & A_{3} \end{aligned}$.	
$117 \mathrm{P} \overline{4} 62$			$\begin{gathered} h 00 \\ b_{2} \\ 0 k 0 \\ b_{1} \end{gathered}$	$\begin{aligned} & A_{2} B_{2} \\ & A_{3} \end{aligned}$			$\begin{gathered} 0 k^{\prime} l^{\prime} \\ b \end{gathered}$	$\begin{aligned} & A_{2} B_{2} \\ & A_{3} \end{aligned}$		
118 P4nı2	$\begin{aligned} & 001 \\ & n_{2} \end{aligned}$	A_{3}	$\begin{gathered} h 00 \\ n_{2} \\ 0 k 0 \\ n_{1} \end{gathered}$	$\begin{aligned} & A_{1} B_{2} \\ & A_{3} \end{aligned}$			$\begin{gathered} 0 k^{\prime} Y^{\prime} \\ n \end{gathered}$	$\begin{aligned} & A_{2} B_{2} \\ & A_{2} \end{aligned}$		
$1191 \overline{4} \mathrm{~m} 2$										
$120{ }_{1}^{4} \mathrm{C} 2$							$\begin{gathered} O k^{\prime} l^{\prime} \\ c \end{gathered}$	$\begin{aligned} & A_{1} B_{2} \\ & A_{3} \end{aligned}$		
$121 / \overline{4} 2 \mathrm{~m}$										
$122 / \overline{4} 2 d$			$\begin{gathered} h h 0 \\ h h 0 \\ d \end{gathered}$	$\begin{aligned} & A_{2} B_{2} \\ & A_{3} \end{aligned}$	$\begin{gathered} 001 \\ t=4 n+2 \\ d \end{gathered}$	A_{3}			$\begin{gathered} 2 h^{\prime}+l^{\prime}=4 n+2 \\ d \end{gathered}$	$\begin{aligned} & A_{1} B_{2} \\ & A_{1} \end{aligned}$

Space group
${ }_{123}{ }_{{ }_{P 4}^{P 4 / m m 2 / m 2 / m}}$

㿻

管

Table 10. (cont.)

	Incident beam direction										
Space group	[100]	[001]		$[110]$		[0kl]		\|hhl]		[$\mathrm{hk} \times \mathrm{0}$]	
001											
$141 \begin{aligned} & \mathrm{l} 4_{1} / a m d \\ & 14_{1} / a 2 / m 2 / d \end{aligned}$		$\begin{gathered} \dot{h} h 0 \\ d \end{gathered}$	A_{3}	$\underset{h}{d}$	A_{3}			d	$\begin{aligned} & A_{2} B_{2} \\ & A_{3} \end{aligned}$	a	$\begin{aligned} & A_{2} B_{2} \\ & A_{3} \end{aligned}$
				a							
				001							
		hho		$l=4 n+2$				$=$			
$142 \begin{aligned} & 14_{1} / a c d \\ & 14 / / a 2 / c 2 / d \end{aligned}$		$\dot{h} h 0$ d	A_{3}	$\begin{gathered} d \\ \bar{h} h 0 \end{gathered}$	A_{3}	$\underset{c}{0 k^{\prime}}$	$A_{3}^{2} B_{2}$	d	$\begin{aligned} & A_{2} B_{2} \\ & A_{3} \end{aligned}$	a	$\begin{aligned} & A_{2} B_{2} \\ & A_{3} \end{aligned}$

Table 11. GM lines for point groups $3, \overline{3}, 32$ and $3 m$
Space groups Nos. 143-155 no GM line.

Space group	Incident beam direction			
156 P3m1				
$157 \mathrm{P3Im}$				
158 P 3 c 1			001 c	$A_{2} B_{2}$ A_{3}
159 P3IC	$\begin{gathered} 001 \\ c \end{gathered}$	$\begin{aligned} & A_{2} B_{2} \\ & A_{3} \end{aligned}$		
160 R 3 m				
161 R3c			$t=\begin{gathered} 00 l \\ c \\ c \end{gathered}$	$A_{1} B_{2}$ A_{3}
162 P 3 lm				
163 P ${ }^{\text {I }} 1 \mathrm{C}$	$\begin{gathered} 0,1 \\ c \end{gathered}$	$\begin{aligned} & A_{2} B_{2} \\ & A_{3} \end{aligned}$		
$164{ }^{\text {P }} \overline{3} \mathrm{~m} 1$				
$165 P{ }^{\text {3 }} \mathrm{Cl}$			$\begin{gathered} 001 \\ c \end{gathered}$	$\begin{aligned} & A_{2} B_{2} \\ & A_{3} \end{aligned}$
$166 \mathrm{R} \overline{3} m$				
$167 \mathrm{R} \overline{\mathrm{B}}_{C}$			$l=\begin{gathered} 00 l \\ 6 n+3 \\ c \end{gathered}$	$A_{2} B_{2}$ A_{3}

beam directions ($0 k^{\prime} l^{\prime} \perp[0 k l], h^{\prime} k^{\prime} 0 \perp[h k 0], \ldots$). The indices of the reflections in which GM lines appear are odd, if no remark is given. For c-glide planes of space groups $R 3 c$ and $R \overline{3} c$ and for a d-glide plane, the reflections in which GM lines appear are specified as $6 n+3$ and $4 n+2$ orders, respectively.

It is found from the tables that 191 space groups can be distinguished by the difference in the GM lines appearing for various electron incidences. It is assumed that the lattice types P, C, I and F are determined kinematically. It is noted that the handedness is determined by a different method (Goodman \& Johnson, 1977; Goodman \& Secomb, 1977). The 16 pairs of space groups which cannot be distinguished by GM lines are enumerated in Table 17. These indistinguishable pairs have to be identified from the intensity change of the forbidden reflections by varying crystal orientation. An example is the pair $I 4$ and $I 4_{1}$. If the intensity of the 200 reflection diminishes or decreases appreciably by varying crystal orientation, the space group is identified to be $I 4_{1}$.

Experimental results

Identification of screw axis and glide plane

If the three-dimensional GM lines are observed, it is obvious whether the GM lines are produced from a screw axis or from a glide plane. As a result, the space groups can be determined by using the tables given in the previous section. It is, however, not easy to observe the three-dimensional GM lines, since broad twodimensional GM lines appear. In order to distinguish between these symmetry elements, Steeds, Rackham \& Shannon (1978) proposed two methods which utilize the three-dimensional symmetries appearing in the transmitted beam and examine how the two-dimensional GM lines change on rotating the crystal, instead of observing the three-dimensional GM lines. However, these methods are disadvantageous from the experimental viewpoint, since they require two photographs taken at different crystal settings.

We emphasize that the presence of the threedimensional GM lines can be revealed by inspecting the symmetries of the fine lines due to higher Laue-zone reflections in a forbidden reflection in place of the direct observation of the GM lines and the methods of Steeds et al. That is, if the fine lines form GM lines, these lines must be symmetric with respect to the two-dimensional GM lines, and vice versa. This method which uses the symmetries of fine lines can find the three-dimensional GM lines easily and requires only one photograph. In most cases, the fine lines can be generated when
relatively thick areas of a crystal are examined. Fig. 3 shows the CBED patterns taken from thin (a) and thick (b) areas of FeS_{2}, of which the space group is $P 2_{1} / a 3$, with [100] electron incidence. In Fig. 3(a), the pattern of the first-order reflection which is set at the Bragg condition is composed of broad GM lines due to two-dimensional interaction. On the other hand, the fine lines due to three-dimensional interaction are clearly seen in Fig. 3(b). The fine lines are symmetric with respect to both the A_{2} and $B_{2} \mathrm{GM}$ lines (Fig. $3 b$). This fact proves the presence of the A_{3} and $B_{3} \mathrm{GM}$

Table 12. GM lines for point groups $6,6,6 / \mathrm{m}, 622,6 \mathrm{~mm}, 6 \mathrm{~m} 2$ and $6 / \mathrm{mmm}$

	Incident beam direction Space group $\|11120\|$

$168 \mathrm{P6}$				
	001	$A_{2} B_{2}$	001	$A_{2} B_{2}$
$169 \mathrm{PG}_{1}$	6_{1}	B_{1}	6_{1}	B_{3}
	001	$A_{2} B_{2}$	001	$A_{2} B_{2}$
$170 \mathrm{P6}$	6,	B_{3}	6,	B_{3}

$$
175 \mathrm{P} 6 / \mathrm{m}
$$

$176 \mathrm{P6}$,/m	$\begin{gathered} 001 \\ 61 \end{gathered}$	$\begin{array}{r} A_{1} B_{2} \\ B_{1} \end{array}$	$\begin{gathered} 001 \\ 6, \end{gathered}$	$\begin{gathered} A_{2} B_{2} \\ B_{3} \end{gathered}$
177 P622				
178 P6,22	$\begin{gathered} 001 \\ 6 \end{gathered}$	$\begin{array}{r} A_{2} B_{2} \\ B_{1} \end{array}$	$\begin{gathered} 001 \\ 6 \end{gathered}$	$\begin{array}{r} A_{2} B_{2} \\ B_{3} \end{array}$
179 P6, 22	$\begin{gathered} 001 \\ 6, \end{gathered}$	$\begin{array}{r} A_{2} B, \\ B, \end{array}$	$\begin{gathered} 001 \\ 6, \end{gathered}$	$\begin{array}{r} A_{1} B_{2} \\ B, \end{array}$

(a)

(b)

Fig. 3. CBED patterns of FeS_{2} taken from (a) thin and (b) thick areas with $[100]$ incidence: only broad fringes due to two-dimensional interaction are seen in the first-order disk in (a), whereas fine lines due to three-dimensional interaction can also be seen in (b). Symmetry of fine lines with respect to broad fringes can determine the symmetry elements.

Table 13. GM lines for point groups 23 and $m 3$

Table 14. GM lines for point group 432

	Incident beam direction
	$[0 k l]$
Space group	(cyclic)

207 P432		
$208 \mathrm{P}_{2} 32$		
209 F432		
$210 \mathrm{F4} \mathrm{t}^{3} 2$		
$211 / 432$		
$212 P 4,32$	$\begin{gathered} h 00 \\ 4_{n} \end{gathered}$	$\begin{array}{r} A_{1} B, \\ B_{3} \end{array}$
213 P4, 32	h00	$A_{2} B_{2}$
21414,32	411	B_{3}

Table 15. GM lines for point group $\overline{4} 3 m$

Space group		$\begin{aligned} & {[100]} \\ & \text { (cyclic) } \end{aligned}$	Incident beam direction [110] (cyclic)			\|hhl] (cyclic)
215 P 43 m						
216 F 43 m						
217143 m						
218 P43n			001 n	A)	$h^{\prime} h^{\prime} l^{\prime}$ n	$\begin{aligned} & A_{2} B_{2} \\ & A_{1} \end{aligned}$
219 F43c					c	$\begin{aligned} & A_{2} B_{2} \\ & A_{3} \end{aligned}$
$220 / 43 d$	0kk 0kk d	$\begin{aligned} & A_{2} B_{2} \\ & A_{1} \end{aligned}$	$\begin{gathered} 00 l^{0} \\ t=4 n+2 \\ d \end{gathered}$	A,	$\begin{gathered} 2 h^{\prime}+l^{\prime} \\ =4 n+2 \\ d \end{gathered}$	$\begin{aligned} & A_{2} B_{2} \\ & A_{3} \end{aligned}$

Fig. 4. CBED patterns of FeS , taken with [110] incidence: (a) zone-axis pattern; (b) and (c) the 110 and 001 reflections are set at Bragg condition, respectively. A_{3} and B_{3} lines due to a-glide plane and 2 , screw axis are separately observed in the 110 and 001 disks, respectively

Table 16. GM lines for point group $m 3 m$

lines, or of an a-glide plane and a 21 screw axis. For such an examination, the fine lines must be formed near the positions where the GM lines are produced. To satisfy this condition for any crystals, it is desirable that the accelerating voltage of the incident beam is variable with a step of about a few hundred volts. Steeds \& Evans (1980) demonstrated for spinel ($\mathrm{MgAl}_{2} \mathrm{O}_{4}$) the change of the fine lines forming $A_{3} \mathrm{GM}$ lines with the accelerating voltage near 100 kV . We observed at 40,60 and 80 kV that the fine lines from spinel appear far from the positions where the GM lines are produced.

Separation between GM lines due to screw axis and those due to glide plane

In Fig. 3, the A_{3} line due to an a-glide plane and the B_{3} line due to a 2_{1} screw axis are simultaneously observed in the 001 disk. Table 13 shows that A_{3} and B_{3} lines can be separately observed in the $\bar{k} h 0$ and $00 l$

Table 17. Space groups indistinguishable by GM lines

($P 3, P 3_{1}, P 3_{2}$)	($P 4 / m, \mathrm{P}_{2} / \mathrm{m}$)
($\left.P 312, P 3,12, P 3_{2} 12\right)$	($\left.P 4 / n, P 44_{2} / n\right)$
(P321, P3, 21, P3 221)	($P 422, \mathrm{P}_{2} 22$)
($P 6, P 6_{2}, P 6_{4}$)	($P 4212,{ }^{2} 42_{2}{ }_{1}{ }^{2}$)
($P 622, P 6_{2} 22, P 6_{4} 22$)	(14,14)
($P 6_{3}, P{ }^{1}, P 6_{5}$)	($1422,14,22$)
$(P 6,22, P 6,22, P 6,22)$	($123,12,3$)
$\left(P 4, P 4_{2}\right)$	($1222,122_{1}, 2{ }_{1}$)

reflections with [$h k 0$] electron incidence. Fig 4 demonstrates the theoretical results by experiment. Fig. 4(a) shows a [110] zone-axis CBED pattern of FeS_{2}. The A_{2} lines are seen in both the 001 and $\overline{1} 10$ disks. By observing the symmetry of fine lines due to higher Laue-zone reflections, it is found that the A_{3} line is produced in the $\overline{1} 10$ reflection but is not produced in the 001 reflection. Thus, the a-glide plane is detected in the 110 reflection and the 2 screw axis in the 001

Fig. 5. Symmetrical four-beam CBED pattern of FeS_{2}. The 100, 013 and 113 reflections are set at Bragg conditions. B_{2} and B_{3} lines are seen in the 100 disk, and only the B_{2} line in 013 disk.
reflection. It is noted that the A_{2} line in the 001 reflection is somewhat obscured by the fine lines which do not form an A_{3} line.

To confirm the result, two CBED patterns were taken at the 110 and 001 Bragg settings (Figs. $4 b$ and c). The fine lines are symmetric with respect to the A_{2} line in the 110 reflection (Fig. 4b), and are symmetric with respect to the B_{2} line in the 001 reflection (Fig. 4c). This confirms again that the A_{3} line due to an a-glide plane and the B_{3} line due to a 2_{1} screw axis are formed in the 110 and 001 reflections, respectively.

GM lines in a symmetrical many-beam pattern

The tables given in the previous section are applicable to the cases in which the projection of the Laue point is present at the midpoint of the line connecting the transmitted beam and the forbidden reflection. In the symmetrical many-beam CBED patterns (Tanaka, Saito \& Sekii, 1983), the GM-line rules are modified. However, the new tables for the symmetrical manybeam cases are not necessary, since the modification is not complicated. The modification is understood for an example of GM lines in a symmetrical four-beam pattern from FeS_{2} (Fig. 5). The 100, 013 and 113 reflections are set at Bragg conditions in the pattern. The B_{2} and B_{3} lines are produced in the 100 reflection. This shows the presence of a 2_{1} screw axis in the [100] direction. To this reflection, the GM-line rules given in the column of the $[h k 0 \mid$ electron incidence for the space group $P 2_{1} / a 3$ (Table 13) is still applicable, since the crystal rotation about a screw axis is not effective for detecting the screw axis (Steeds, Rackham \& Shannon, 1978). Only the B_{2} line is seen in the 013 disk, although
it is obscured by the fine lines. The GM-line rules cannot be applicable to this reflection, since the rules require the appearance of A_{2} and A_{3} lines. The A lines appear only when the incident beam lies in a glide plane. In the present case, the condition is not satisfied. The B_{2} line can still appear, since glide plane and 2_{1} screw axis act identically in the two-dimensional interaction and two Umweganregung routes (a) and (c) shown in the paper of Gjønnes \& Moodie (1965) are set at the same diffraction condition.

The authors thank Mr F. Sato for his technical assistance.

References

Cowley, J. M. \& Moodie, A. F. (1959). Acta Cryst. 12, 360-367.
Cowley, J. M., Moodie, A. F., Miyake, S., Takagl, S. \& Fилмото, F. (1961). Acta Cryst. 14, 87-88.
Fulwara, K. (1959). J. Phys. Soc. Jpn, 14, 1513-1524.
Gjgnnes, J. \& Moodie, A. F. (1965). Acta Cryst. 19, 65-67.
Goodman, P. \& Johnson, A. W. S. (1977). Acta Cryst. A33, 997-1001.
Goodman, P. \& Secomb, T. W. (1977). Acta Cryst. A 33, 126-133.
Miyake, S., Takagi, S. \& Fuimoto, F. (1960). Acta Cryst. 13, 360-361.
Steeds, J. W. \& Evans, N. S. (1980). Proc. Electron Microsc. Soc. Am., edited by G. W. Bailey, pp. 188-191. Barton Rouge: Claitor,
Steeds, J. W., Rackham, G. M. \& Shannon, M. D. (1978). Inst. Phys. Conf. Ser. 41, 135-139.
Tanaka, M., Saito, R. \& Sekil. H. (1983). Acta Cryst. A39, 357-368.
Tanaka, M. \& Sekir, H. (1982a) Tenth Int. Congr. Electron Microscopy, Hamburg, pp. 631-632.
Tanaka, M. \& SekiI, H. (1982b). Preprints of the Spring Meeting of the Physical Society of Japan, Yokohama, April, pp. 2-388.
Tinnappel, A. (1975). PhD Thesis, Tech. Univ. Berlin.

[^0]: * Present address: Omron Tateishi Electrics Co, Kyoto 617, Japan.

[^1]: * The dynamic extinction due to g^{\prime} has been recently observed in the 420 reflection of spinel by Tanaka \& Sekii (1982b). However, we do not consider the extinction, since it has little advantage in determining the space groups.

